新闻动态 · NEWS ·
水资源基础调查以国土“三调”和年度国土变更调查成果为统一底版,以我国陆域国土空间范围内的所有水体(液态水和固态水、淡水和咸水、地表水和地下水)为调查对象,从自然资源的角度开展调查,掌握全国水资源空间分布、数量、质量和动态变化等状况,为自然资源管理、生态文明建设、国民经济和社会发展提供水资源基础信息。
主要任务包括:
(一)水域空间调查。以国土“三调”和年度国土变更调查的水域范围为基础,调查全国江河、湖泊、水库等水域丰水期和枯水期的水面范围、面积等情况,坑塘的范围、面积等情况,以及夏季冰川及常年积雪的范围、面积等情况。
主要方法:以优于2米的国产光学卫星影像为主,优于5米的SAR卫星影像为辅,优于50米的国产光学卫星影像为高频次调查监测的补充数据源。全国范围按照丰枯水期采集遥感影像数据,其中,丰水期遥感影像南方地区原则上集中在6-7月,北方地区原则上集中在7-8月;枯水期遥感影像原则上集中在11-12月;部分特殊地区可根据当地丰枯期特征采集相应月份的遥感影像数据。重要生态脆弱区和受极端气候事件影响的重点地区,根据实际需求,增加遥感影像数据采集频次,按月度或季度采集卫星影像数据。利用多源遥感影像,采用自动和人工相结合的方式,在正射影像图上分别提取江河、湖泊、水库等现状水面覆盖范围信息,形成调查底图。地方自然资源主管部门在国家提取的水域空间数据基础上,组织队伍以内业调查为主体开展复核,确定水面范围和边界。省级自然资源主管部门形成本辖区水域空间调查成果并上报国家。
(二)水储存量调查。包括地表液态水储存量、地表固态水储存量和地下水储存量。开展水下地形(水深)测量;调查全国江河、湖泊、水库、坑塘水储存量,夏季冰川及常年积雪储存量,以及全国地下水储存量。
地表液态水储存量调查主要内容、来源及要求
调查 对象 | 调查内容、来源 | 要求 | |
面积 | 水深 | ||
湖泊 | 来源于丰水期和枯水期水域空间调查成果 | 水下地形(水深)测量 | 对于50平方千米以上的湖泊,可以根据湖泊特点,原则上均匀部署不少于13条测深线获取水深数据(主测深线需保留),具体按照部制定的水下地形测量技术文件执行。 |
水库 | 来源于丰水期和枯水期水域空间调查成果 | 收集共享为主 | 对需要开展实地调查的水库,要求同上。 |
坑塘 | 来源于年度国土变更调查成果 | 水深抽样测量、资料收集等 | 根据区域特点、坑塘类型,基于抽样理论确定抽样强度,一般总体抽样比例控制在1%-5%。 |
河流 | 来源于丰水期和枯水期水域空间调查成果 | 典型断面水下地形(水深)测量 | 断面测量线可以考虑按1000-2000米间距布设。 |
水库水储存量调查
对于大中型水库应重点调查,主要通过资料收集掌握水库水下地形和水储存量数据成果。对于具有水下地形和水储存量数据资料的水库,如果实测以来水库淤积不严重,可通过资料收集,获取水库的名称、位置、面积、库容、调蓄水位、库容曲线和储存量等数据成果。不满足以上条件的水库需要开展水储存量实地调查,按照湖泊水储存量调查方法构建“水面面积-水深-水储存量”数学模型,结合水域空间调查成果计算水库水储存量。对于收集资料无法满足工作精度要求的小型水库,采用面积小于1平方千米的湖泊水储存量调查方法开展调查。
坑塘水储存量调查
根据2023年度国土变更调查成果中的坑塘水面图斑,部署抽样样本,开展坑塘水深抽样调查。以数理统计为理论基础,根据区域特点、坑塘类型,按照坑塘总数的1%-5%开展坑塘抽样调查,构建不同片区坑塘“水面面积-水深-水储存量”统计模型,利用2024年度国土变更调查成果分析计算坑塘水储存量。可采用实测或资料收集等方式获取坑塘水深。开展坑塘水深实测时,根据坑塘特点合理布设测点,可按照“十”字或“井”字型布设,采用测杆、测锤或声呐装备等进行测量,单个坑塘原则上测深点数3-5个。
河流水储存量调查
省级自然资源主管部门根据本地工作需要和计划安排,确定2024-2025年期间需要开展调查的河流或河段,可参照以下要求开展河流(河段)水储存量调查。a)根据控制断面水下地形(水深)测量数据,构建河流(河段)水储存量计算数学模型,并结合水域空间调查成果计算河流(河段)水储存量;b)河流断面测量可以考虑按1000-2000米间距布设测线,平直等宽河段可根据条件放宽,地形明显变化河段需适当加密。
综合利用声呐、激光、测杆、测锤、遥感反演等多种方式,选取合适的采样间隔,获取水下地形(水深)数据,构建“水面面积-水深-水储存量”数学模型,结合水域空间调查成果得出湖泊、河流、水库、坑塘等地表液态水储存量。
对于50平方千米以上的湖泊、水库,可以根据湖泊、水库特点,原则上均匀部署不少于13条测深线获取水深数据(主测深线需保留),具体按照部制定的水下地形测量技术文件执行。
冰川及常年积雪调查
收集整理现有冰川编目数据集、冰川高程数据以及地方近期完成的冰川调查成果。其中,冰川高程数据包括历史DEM数据和空间分辨率优于10米的*新DEM数据。
综合运用卫星遥感、航空物探、探地雷达、钻探、花杆、自动气象水文观测、模拟计算等手段,开展典型冰川综合调查监测与研究,监测冰川表面运动与变化,探索研究典型冰川厚度计算模型;探索研究基于多期DEM数据、典型冰川模型等计算区域冰川厚度和冰川消融量的技术方法,综合冰川实测和模型计算数据形成典型冰川面积、厚度及变化,以及冰川消融量等数据成果;研究冰川消融对下游水资源影响。
典型冰川实测任务一览表
地区名称 | 冰川实测区域 | 要求 |
西藏 | 1.横断山系 2.念青唐古拉山系 3.喜马拉雅山系 4.冈底斯山系 | 从不同山系中选取具备调查条件的代表性冰川,测量冰川厚度,核定冰川面积(边界线/边界点),计算单个冰川储存量。依据单个冰川特征,布设“井”、“米”或“丰”型测线(也可以根据实际情况尽量均匀布设),宜利用探地雷达等手段探测冰川厚度及获取不同测点的冰川厚度。 |
新疆 | 1.昆仑山系 2.喀喇昆仑-昆仑山系 3.天山山系 | |
青海 | 1.昆仑山系 2.羌塘高原山地-唐古拉山系 3.祁连山系 | |
甘肃 | 祁连山系 | |
四川 | 横断山系 | |
云南 | 横断山系 |
地下水资源调查
开展水文地质补充调查、地下水监测与统测、地表水与地下水转化调查、地下水资源评价等,查明含水层分布与结构、地下水系统边界、地下水资源评价参数等,掌握地下水流场形态与变化,评价形成降水量及降水资源量、地表水与地下水转化量、地下水资源量、地下水质量等国情数据。
水文地质补充调查与概念模型构建。通过资料收集和在重点地区补充开展以1:5万比例尺为主的区域水文地质调查,掌握地下水系统边界、含水层与含水岩组空间结构及参数、包气带结构与“三水”转化关系、地下水补给径流排泄条件、地下水动态特征、地下水化学特征与水质状况、与地下水有关的生态环境地质问题等。调查深度应达到主要含水层组的底板。根据评价单元地下水补给径流排泄条件,建立评价单元水文地质概念模型。对于工作程度高的地区,可构建地下含水层的三维结构模型。
水文地质参数与地下水资源评价参数调查校验。各地区根据实际情况,重点调查、校验会影响资源评价准确性的参数。主要包括含水层厚度、降水入渗补给系数、河道渗漏补给系数、渠系渗漏补给系数、渠灌田间入渗补给系数、井灌回归补给系数、稳渗率、给水度、弹性释水系数、渗透系数、越流系数、潜水蒸发系数、基径比等。
地下水相关生态地质环境问题调查。主要包括河道断流、湖泊萎缩、高原湖泊漫溢、植被退化、土地荒漠化、土地盐渍化、地下水超采与枯竭、泉流量衰减、地面沉降与地裂缝、地面塌陷(岩溶塌陷)、海(咸)水入侵等。
地下水监测与地下水统测。地下水监测主要是运行维护国家地下水监测工程站点和省级地下水监测站点。为更好掌握区域地下水流场及动态变化,在***和省级监测站点基础上,按照国家地下水统测有关技术要求在主要平原盆地区、地下水开采区、岩溶地区、重要河谷与生态脆弱区等区域开展地下水统测,弥补现有地下水监测站点不足问题。各省自然资源主管部门按一定测点密度(见表3),原则上每年定期组织开展1-2期地下水统测工作。
地下水统测密度表
地 区 类 别 | 点数(个/100km2) | |
平原盆地 | 重点区 | 4-8 |
次重点区 | 2-4 | |
一般区 | 1-2 | |
山地丘陵 | 重点区 | 2-4 |
次重点区 | 1-2 | |
一般区 | 0.01-1 | |
岩溶地区 | 重点区 | 2-4 |
次重点区 | 1-2 | |
一般区 | 0.01-1 | |
荒漠区 | 重点区 | 0.1-1 |
一般区 | 0.01-0.1 | |
注:本表统测密度指单个含水层的地下水测点密度,包含可利用到的国家、省市及相关地下水长期动态监测站点。 |
主要方法
综合采用水文地质遥感、水文地质测绘、地球物理勘探、水文地质钻探、野外原位试验、断面测流、示踪试验、抽水试验、地下水监测、地下水统测、地下水水样采集与测试等技术手段开展地下水实地调查。在地下水资源评价参数校验和水文地质概念模型构建基础上,依据地下水基础调查数据,开展地下水资源数量和质量评价。
地下水资源量评价,山丘区一般采用排泄量法;平原区一般采用补给量法,并计算排泄量进行资源量均衡校验。根据地下水化学组分含量和功能特征开展地下水质量评价。根据地下水长期监测网和地下水位统测获取的地下水位变化数据,结合含水层给水度参数和弹性释水系数计算地下水储存变化量。地下水可开采量评价,山丘区以山间盆地、岩溶区和河谷区为重点区进行评价,重点保障枯季生态基流量;平原区以水均衡法为主要方法,实际开采量调查法和可开采系数法为参考方法,重点保障生态水位;对于地下水开采程度较高且资料丰富的地区,可选取数值法进行评价。地表水与地下水转化量调查主要采用水动力学法、水化学法和环境同位素技术等相结合方法,确定地表水和地下水转化监测断面,综合分析地表水与地下水相互转化关系,计算转化量。
(三)水资源量调查。从水利部门共享地表水资源相关数据,获取各省(区、市)、各流域地表水资源量。开展全国地下水资源周期和年度调查评价,掌握各省(区、市)、各流域的地下水资源量。
(四)水资源质量调查。调查获取全国地下水、重点地区地表固态水等水资源的质量。地表水资源质量共享生态环境部门数据成果。
(五)年度变化调查。对水资源主要指标开展年度变化调查评价,包括湖泊、水库等水体储存年度变化量,地下水储存年度变化量,冰川及常年积雪年度面积变化和消融量,河湖库塘水面面积年度变化等,掌握水资源年度变化情况并形成年度成果。
(六)水资源专题调查评价。面向重点区域,针对自然资源管理需求,围绕水资源与其它自然资源的相互关系,开展专题调查评价工作。
水域空间调查、地表液态水储存量调查、冰川及常年积雪调查、地下水资源调查、水资源专题调查评价和数据库建设等工作。
数据库建设
国家统一制定水资源基础调查数据库建设标准,按照分建共享原则,建设国家和地方集中与分布式相结合的水资源基础调查数据库,包括水域空间调查数据库、地表液态水储存量调查数据库、冰川及常年积雪调查数据库、地下水资源调查数据库等。收集共享的数据成果也纳入数据库。省级自然资源主管部门在国家统一的数据库架构下,根据国家统一标准,负责本地区水资源基础调查数据的入库和维护。水资源基础调查数据库纳入自然资源三维立体时空数据库。
1.主要内容
包括水域空间调查对象的空间分布与属性信息,以及工作过程中的成果数据,具体包括河流、湖泊、水库、坑塘等空间分布及成果信息。
(2)地表液态水储存量调查数据库
包括水下地形(水深)测量成果、储存量计算数学模型、地表水储存量等调查成果。
包括冰川名录、冰川分布与面积、冰川厚度与储存量等调查成果。
包括大气降水、水文地质、地下水评价参数、地下水动态观测、地下水统测、地下水开采量、地表水开发利用、地表水与地下水转化量、地下水资源量、地下水储存量、地下水可持续开采量、地下水化学、地下水水质等调查成果。
相关资料收集与共享清单
收集内容 | 主要数据资料 | 数据资料来源 | 任务分工 |
***降水格点数据 | 历年不同时间尺度降水量格点数据 | 气象部门 | 自然资源部负责协调获取和下发各省 |
青藏高原以往湖泊调查数据 | 水下地形数据、水储存量、库容曲线等 | 中国科学院 | 自然资源部负责协调 |
国家地下水监测工程水位、水质数据 | 历年地下水水位、水质数据 | 中国地质环境监测院 | 自然资源部负责向各省共享 |
以往冰川调查数据 | 冰川**次和第二次编目数据集,典型冰川厚度、消融等数据 | 中国科学院 | 自然资源部负责协调 |
气象数据 | 雨量站和蒸发站的位置坐标,历年不同时间尺度的降水、蒸发等气象数据 | 气象部门、水利部门 | 省级自然资源主管部门负责组织协调获取 |
水文测站与水文数据 | 历年不同时间尺度的水位、流量等数据 | 水利部门 | 省级自然资源主管部门负责组织协调获取 |
地表水资源量 | 不同时期各级行政单元和水资源区的地表水资源量 | 水利部门 | 省级自然资源主管部门负责组织协调获取 |
水资源开发利用数据 | 地表水和地下水历年逐月用水量、耗水量及退水量等数据;农业种植类型、种植面积、种植结构等数据;引水渠系、灌区分布、灌溉面积、灌溉水量、灌溉定额等数据 | 水利、农业农村等相关部门 | 省级自然资源主管部门负责组织协调获取 |
相关部门开展过的湖泊河流水库调查数据 | 水下地形数据、库容曲线、水储存量等;水利普查数据等 | 水利、交通运输等相关部门 | 省级自然资源主管部门负责组织协调获取 |
地表水质 | 不同时期水质数据 | 生态环境部门 | 省级自然资源主管部门负责组织协调获取 |
来源:自然资讯整理公众号